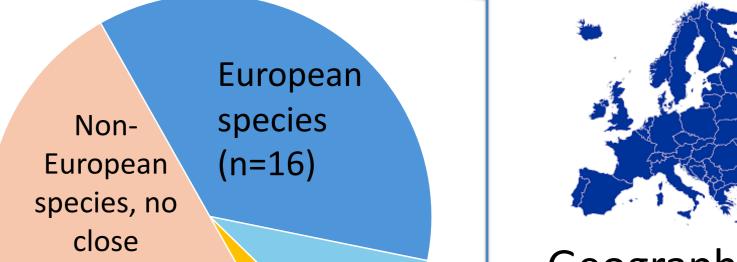
ARCHE CONSULTING

UKCEH

SYRALUTION

Evaluating the Sensitivity of Environmental Threshold Derivation of Cu in Europe to the Use of Geographically Relevant Species

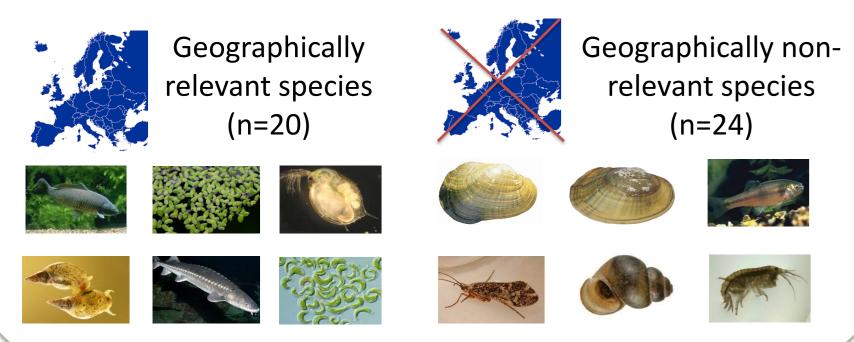

Charlotte Nys¹, Karel Vlaeminck¹, Patrick Van Sprang¹, Stephen Lofts², Stijn Baken³, Karel De Schamphelaere⁴

¹ARCHE Consulting, Belgium; ²United Kingdom Centre for Ecology & Hydrology (UKCEH), United Kingdom; ³International Copper Association (ICA), Belgium; ⁴SYRALUTION, Belgium Contact: charlotte.nys@arche-consulting.be

Introduction

Species in the updated Cu aquatic toxicity database

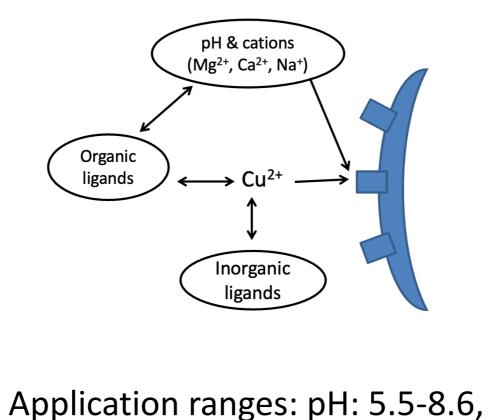
The environmental threshold derivation approach for Cu in the aquatic environment has recently been updated. The update considered both a new ecotoxicity dataset^a and an optimized bioavailability modelling approach^b. Ecotoxicity datasets of **data-rich metals** used for environmental threshold derivation typically contain toxicity data of numerous species. For Cu, **more than half of the species in the chronic toxicity database do not occur in Europe.** For some species, no close relatives (at the genus level) occur in Europe, as their genus or even family is endemic to other



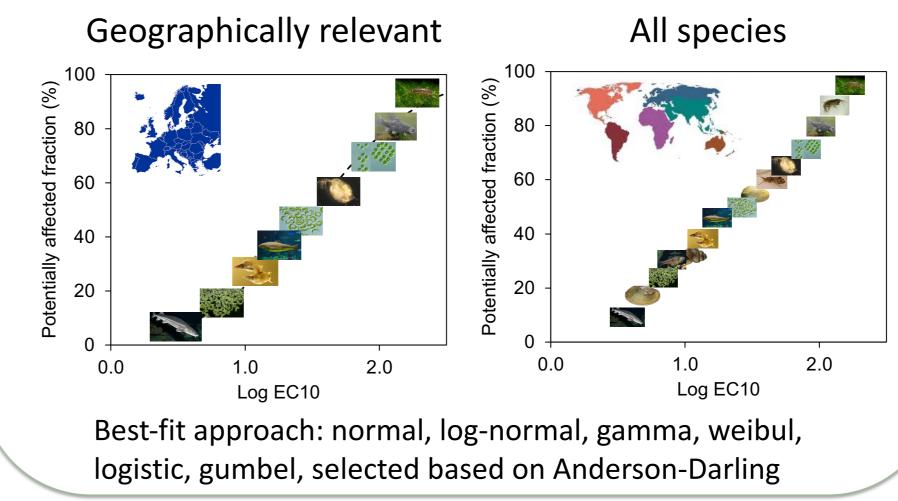
regions.

Research hypothesis I: The consideration of non-European species has no influence on environmental threshold derivation for Cu

Methodology


1. Updated database compilation Cu VRAR database + new literature search Updated reliability & relevancy evaluation cfr. PNEC derivation 2022^a

Research hypothesis II:


The current bioavailable Environmental Quality Standard (EQS: 1 μg dissolved Cu/L^{c,d}) can still be used under the most recent environmental threshold derivation approach, i.e., site-specific 5% hazardous concentrations (HC5) are for most waters in Europe > 1 μg dissolved Cu/L.

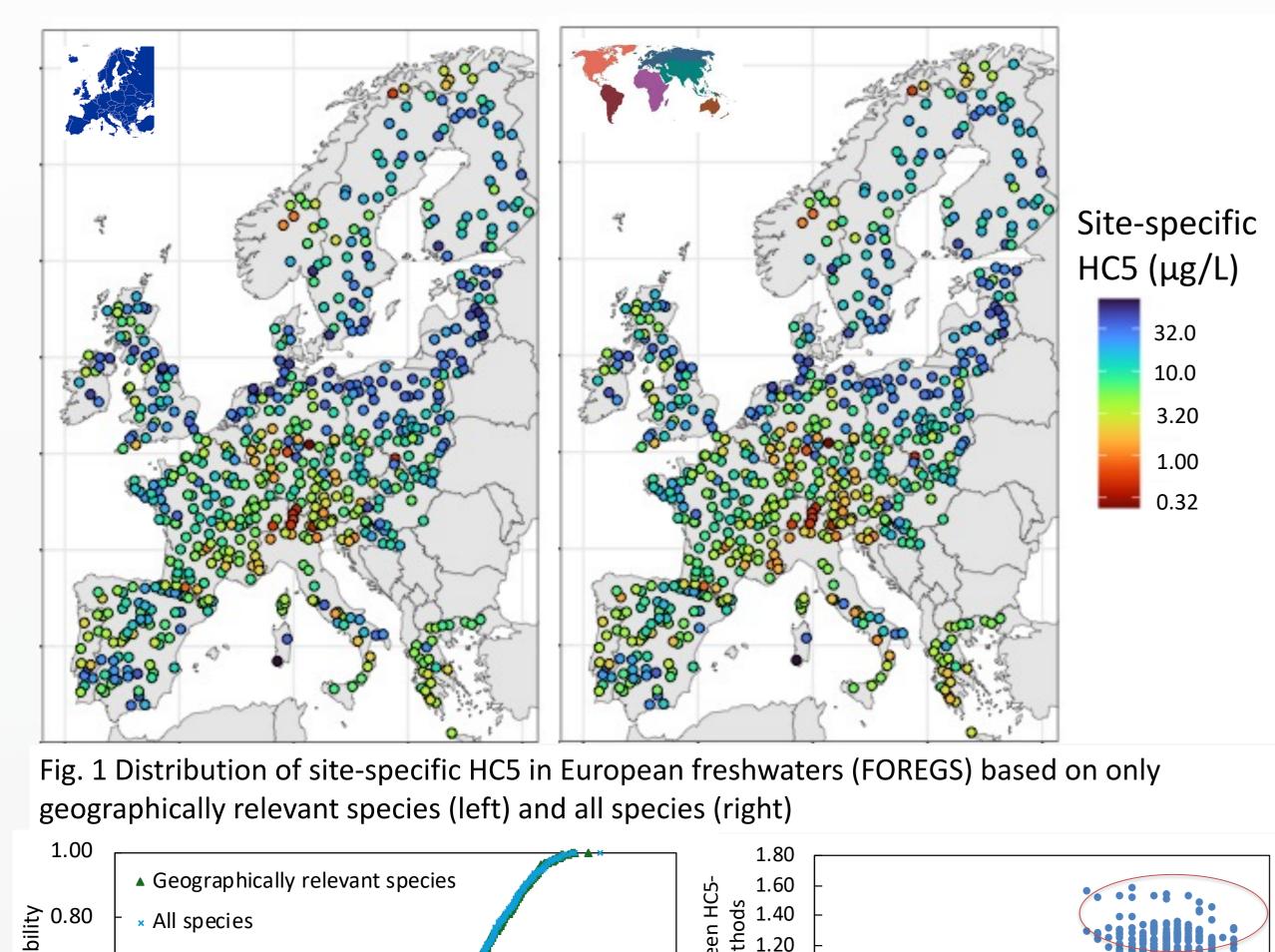
2. Bioavailability modeling (approach of Nys et al. 2024^b)

Ca 2.4-124 mg/L

3. Species sensitivity distribution (SSD) fitting <u>Site-specific</u> 5% hazardous concentration (HC5)

4. Environmental Quality Standard (EQS) derivation Using Water Framework Directive (WFD) approach^e

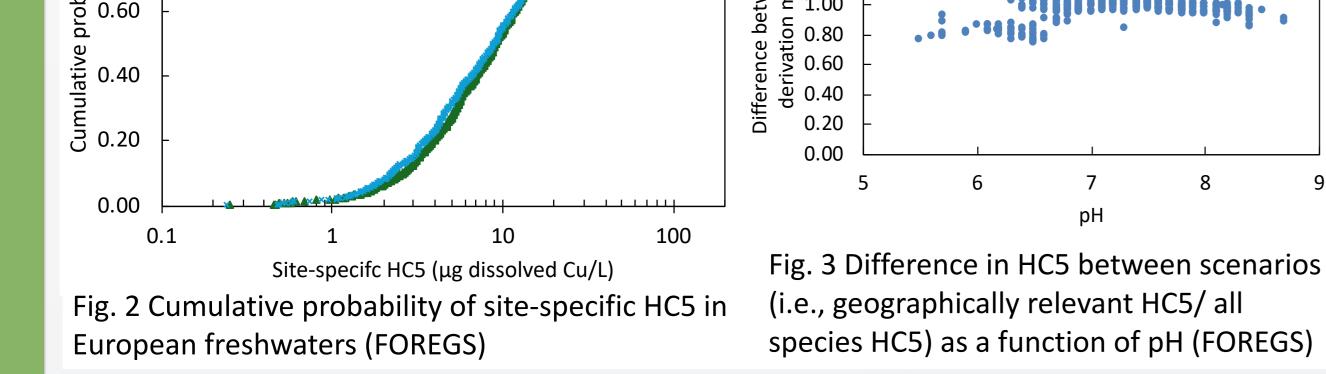
Present study: Tier 1 **identify regions with high Cu bioavailability** (low HC5) using FOREGS database^f


Only waters within application ranges were considered

relatives in Europe (n=22) Geographically relevant species (n=20)

*Non-European species, but a relative at genus-level occurring in Europe & genus not already represented in SSD by a European species (n=4) ** Non-European species and a relative at genus-level occurring in Europe, but genus already represented in SSD by another European species (n=2)

Distribution of Cu sensitivity in European freshwaters



Research hypothesis I:

- The consideration of only geographically relevant species has **overall limited effect on the site-specific HC5 distribution** if the entire FOREGS database is considered (Fig. 1 & 2). If the entire distribution is considered there is no significant difference in HC5-calculation (Kruskal-Wallis test p=0.44) when only geographical relevant species or all species are considered.
- At the **site-level**, the species selection can have **an important influence** on site-specific HC5 calculations (Fig. 3). This is mainly related to specific bioavailability conditions. For instance, at high pH (>7.4), where the sensitive Papua New Guinean green algae *Chlorella* sp. drives the HC5
- The alpine region (Switzerland, Italy, Austria and Slovenia) and Norway are the regions with the highest Cu bioavailability conditions (Fig. 1).

Research hypothesis II:

- The current bioavailable EQS for Cu in Europe (1.0 μg/L) is protective for most freshwaters in Europe, as only 2% of European waters (using the FOREGS database) have a site-specific HC5 <1.0 μg/L under both species-selection scenarios. The 5th percentile of HC5 in European freshwaters (Fig. 2) is equal to
 - Geographical relevant species: 1.6 μg dissolved Cu/L
 - All species: 1.7 µg dissolved Cu/L

Next step:

 Calculation of country-specific EQS* for regions with the highest Cu bioavailability conditions using country-specific datasets (e.g. MERA-database)

*Country-specific EQS= 5th percentile of the site-specific HC5 for the considered country

The continental EQS under the WFD^e represents the lowest country-specific EQS

Conclusion

- Ecotoxicity databases contain toxicity data for a multitude of non-geographically relevant (i.e., non-European) species.
- The consideration of non-geographically relevant species has limited influence on environmental threshold derivation, if the entire distribution of site-specific HC5 in European waters is considered
- Under specific bioavailability conditions, non-geographically relevant species may influence the site-specific HC5 derivation.
- The current bioavailable EQS (1.0 μ g dissolved Cu /L) is protective for most freshwaters in Europe
- As a next step, country-specific EQS will be calculated to derive a continental EQS.

Acknowledgements: This work was funded by the International Copper Association.

References: ^aEuropean Copper Institute. 2022. https://reach-copper-consortium.eu/substances/; ^b Nys et al. 2024. Environ Toxicol Chem 43: 450-467; ^c Peters et al. 2019. B Environ Contam Tox 102: 153-159; ^d Wilson et al. 2023. Environ Toxicol Chem 19: 1570-1580; ^e EU Water Directors. 2018. Guidance document No. 27: Technical Guidance for deriving environmental quality standards; ^f http://weppi.gtk.fi/publ/foregsatlas/; ^ghttps://mera-rapps.shinyapps.io/EU_PhysChem_DB_Tool/

Liefkensstraat 35D 🔻 B-9032 Gent, Belgium 🔻 T. +32 9 216 70 38 🔻 info@arche-consulting.be 🛛 🔻 www.arche-consulting.be