

A Holistic Modelling Approach to Predict Silver (Ag) Toxicity on Rainbow Trout Populations

European Precious Metals Federation

Karel Vlaeminck¹, Charlotte Nys¹, Katrien Arijs^{1,2}, Jelle Mertens², and Karel De Schamphelaere^{1,3}

¹ARCHE Consulting (Belgium), ²European Precious Metals Federation (EPMF, Belgium), ³University of Ghent (UGent, Belgium)

Introduction

Toxic effects of silver (Ag) to freshwater fish depend on water physicochemical parameters:

- Biotic ligand models (BLM) allow to calculate interactions between water chemistry and metal toxicity
- For juvenile and adult fish, such as rainbow trout (Onchorhynchus mykiss), Ag accumulation at the gill decreases sodium (Na) uptake, leading to mortality

Sodium Balance Model (SBM) by Paquin et al. (2002):

- SBM describes effects of Ag on the internal Na-balance in rainbow trout
- SBM predicts the median survival time (ET50) of the population for a specific Ag accumulation in the gills (i.e., the biotic ligand [BL]).

Ag (silver)

Ecotoxicity data for a

specific

physicochemistry

Ag fish BLM

(biotic ligand model)

Calculate Ag-BL

concentrations

SBM and the ET50 have clear limitations:

- SBM only applicable to juvenile and adult rainbow trout
- No extrapolation to other effects levels or exposure durations

Objectives:

- Refine the SBM model of Paquin et al. (2002)
- Use the SBM to compare effects of Ag across different water chemistries and between different rainbow trout life stages

→ Goal:

Assess which is the most sensitive life stage towards Ag toxicity, and which is most determining for rainbow trout population effects

Methods

Modular design:

SBM – predict adult/juvenile mortality

RSF – estimate embryo/larval mortality

IBM – predict population-level effects

BLM – calculate Ag accumulation at BL

Results

2 Mathematics of the refined SBM

RSF

(rel. survival fraction)

Janssen et al. (2021)

NetLogo

implementation

SBM

(sodium balance

model)

Paquin et al. (2002)

Look-up table 🔏

Embryo Larvae Juvenile Adult

Individual-based model (IBM) framework

InSTREAMgen (Ayllon et al., 2016)

3 Predictions using BLM-SBM-IBM

Population effects over

time

Abundance

Biomass

Size distribution

Life stage with the

strongest impact at the

population level?

1 Refinement of the SBM

Based on ionoregulation data: there is a distribution on the lethal % threshold!

Use parallel measurements of plasma Na and mortality:

Better prediction of intra-specific variation of mortality that is observed when a rainbow trout population is exposed to Ag

Each organism has its individual tolerance (t_i) towards decrease in plasma Na due to Ag exposure:

$$t_i \sim \mathcal{N}(\mu, \sigma^2)$$

Individual threshold leads to an individual survival time at a specific Ag concentration (predicted with the SBM):

$$T_i = f([BL:Ag], t_i)$$

Individual survival time is implemented in the individual-based population model (InSTREAMGen)

IF
$$(\tau_{exp} > T_i)$$
 THEN $[die? = TRUE]$

	Dissolved Ag	Ind. level mortality (70d) implemented		Pop. effects on biomass (10y average) <u>predicted</u>	
		RSF	SBM	RSF only	SBM only
	1.2 μg/L	36%	0%	0%	0%
	2.5 μg/L	100%	2%	100%	0%
	5 μg/L	100%	87%	100%	100%

Conclusion

Based on the predictions of the BLM-SBM-IBM:

- Refined SBM better predicts realistic variability in mortality that is observed when rainbow trout is exposed to Ag (results not shown)
- SBM considers an individual threshold approach, where an individual's survival depends on its tolerance towards a decrease in plasma Na
- Effects on embryo/larvae (with RSF) and juveniles/adults (with SBM) were extrapolated to populations using a toxicokinetic (TK) approach
- Effects on embryo/larvae (with RSF) occur at lower dissolved Ag concentrations than effects on juveniles/adults (with SBM) Based on the IBM predictions, effects on embryo/larvae due to Ag are more determining for population-level effects than effects on
- juveniles/adults

Paquin et al., Comp. Biochem. Physiol. C, 2002, 133.1-2:3-35 References:

Ayllón et al., Ecol. Modell., 2016, 326:36-53

Janssen et al., *Environ. Toxicol. Chem.*, 2021, 40.10:2765-2780

Project funded by the European Precious Metals Federation (EPMF) – Brussels, Belgium